
LinkBricks: A Construction Kit for Intuitively Creating and
Programming Interactive Robots

Jiasi Gao1,2,3∗ Meng Wang1,2,3∗ Yaxin Zhu2 Haipeng Mi1

Abstract— This paper presents LinkBricks, a creative con-
struction kit for intuitively creating and programming interac-
tive robots towards young children. Integrating building blocks,
a hierarchical programming framework and a tablet applica-
tion, this kit is proposed to maintain the low floor and wide walls
for children who lack knowledge in conventional programming.
The blocks have LEGO-compatible interlock structures and are
embedded with various wireless sensors and actuators to create
different interactive robots. The programming application is
easy-to-use and provides heuristics to involve children in the
creative activities. A preliminary evaluation is conducted and
indicates that LinkBricks increases young children’s engagement
with, comfort with, and interest in working with interactive
robots. Meanwhile, it has the potential of helping them to learn
the concepts of programming and robots.

I. INTRODUCTION

Computationally enhanced construction kits are becoming
more and more popular in STEAM-related domains in the
past decades. These kits are often composed of building
blocks which can be assembled in a variety of ways to
serve multi interactive manners[1]. Some kits also provide
tools for children to program their constructions[2], [3].
Many prototypes, as well as extra curriculum, explored the
constructive and creative learning[4], [5] using these new in-
teractive tool kits. And lots of researches indicated such kits
bring tremendous strengths for children, such as problem-
solving[6], reflective thinking[7], imagination[8], etc.

Despite its predominant proliferation among computing
education, the construction kits remain some limitations
that hinder the broader use of population, especially for
those young children who lack fundamental knowledge and
practices in engineering and programming. As we have
discovered, a majority of current tools target at primary
and secondary school students. As for preschool children,
traditional kits tend to be aesthetically and behaviorally
limited[9]. The key issues come out about the high barriers
in completing the tasks during the process of programming
and assembly manipulation[10]. This motivates us to design
a suitable kit for preschoolers, and our research questions
are:

• How to make an appropriate abstraction of computing
concepts to reduce programming barriers of young
children.

*Contributes equally
1 Academy of Arts and Design, Tsinghua University, China.
2 The Future Laboratory, Tsinghua University, China.
3 Lab for Lifelong Learning, Tsinghua University, China. Emails:

gaojs18@mails.tsinghua.edu.cn, mengwangthu@tsinghua.edu.cn,
zhuyaxin1994@mails.tsinghua.edu.cn, mhp@tsinghua.edu.cn

Fig. 1. LinkBricks overview. Children construct interactive robots using
building bricks (left), and deploy them with a brick-based programming
application (right). .

• What are the proper design strategies of building blocks
and programming environment to facilitate constructive
tasks.

A. Contribution

In this paper we propose a novel construction kit,
LinkBricks (Figure 1), which provides LEGO-compatible
computational blocks for physical construction and an easy-
to-use programming application that reaches a sweet spot
between structured and open-ended programming activities.
Our contributions are summarized as follows:

• A set of bricks embedded with wireless sensors and ac-
tuators, enabling children to build a variety of interactive
robots without the constraint of wires.

• An application based on a hierarchical programming
framework, allowing young children to create complex
behaviors by simple interactions.

B. Related Work

Construction kits that are designed for building blocks
have a long history in education[9]. These kits emphasize the
pedagogical concept like “learning through designing”[11]
and “learning by doing[12]”. In recent decades, these kits
has blossomed in a variety of directions using new tech-
nologies, afford different means of construction manners[13].
Early works like Programmable bricks[14] and its exten-
sions (LEGO Mindstorms, Cricket, etc.) permit children to



design and decorate their customized construction pieces.
GO[15] and Phidgets[16] are those representative works
that broaden participation and allow the children to explore
advanced knowledge. Despite many styles and paths these
kits supported, they are mainly designed for school-age
children with basic knowledge. Young children aged form
4-6 encounter many challenges in building such blocks[6],
[2], the complexity of connection operation and the lack
of instruction[3] frustrate the kids. So there is a essential
purpose to age-suitable block design[6] for fluent experience.
The latest works intend to bring out new forms, new materi-
als and new architectures, like Topobo[17] and roBlocks[18].
These works provide a set of wireless blocks for creating
an interactive robots, which is simple enough to reach a
low-floor usability to facilitate the constructive activities.
Our work follows the principle of simplification for children
to recognize the functionality of the blocks while maintain
many paths to interact with them[19].

On the other hand, The question of how to teach young
children programming is a classic research topic in the
field of HCI. A notable early work is the LOGO language
by Papert[11]. Nowadays children can use Scratch[20] to
program the behavior of a series of sprites. These early
works are usually designed to run programs virtually or
with an sprite (such as the turtle of LOGO). Combined
with the physical construction kits, these computational and
engineering concepts exposed as tacit feedback. Nowadays,
many construction kits provide visual blocks programming
interface which diminish the difficulties of text and symbol-
based languages for young children[21]. They provide nat-
ural language description of blocks and the drag-and-drop
composition interaction, making the programming procedure
easier[22], but are still too hard for young children to un-
derstand. Some other programming interfaces utilize tangible
concepts[23], [24], [18] to present ideas of programming the
interactive system. While these programming interfaces are
easy to learn and use, they are usually capable of presenting
very limited logic relationships. Much more attention should
be paid to the programming interface and framework, and
to find a proper abstraction of computing concepts. Our
work intends to provide a novel programming environment
for construction kits, facilitating preschool children to create
various kinds of interactive robots.

C. Design Requirements

Despite lots of work have integrated new technologies
into physical objects as educational toolkit for STEAM-
related teaching, the majority of them are designed for
school-age children. On the contrary, our target users are
preschool children of 4-6 years old who may not have much
basic knowledge of technology. As the research questions
mentioned above, our goal is bringing simple and extensible
kits to have them involved and interested in the constructive
play while learning some basic concepts and knowledge
about programming and robots. The design requirements are
summarized as follows:

Fig. 2. The hierarchical programming framework. The four-layer design
aid children to easily create complex behaviors for the interactive robot..

• Hide complex computing concepts while keep powerful
ideas achievable.

• Keep the construction kits simple while remain possi-
bilities for children to explore.

• Carefully design structured instructions to encourage
early successes, and utilize scaffolding instructions to
support exploration and tryout.

To achieve these design requirements, we will describe
the design of programming framework, wireless constructive
hardware, and GUI-based programming interface.

II. SYSTEM DESIGN

A. Programming Framework

The basic computing principles emphasize the procedural,
abstraction and modularity thinking. When programming
with a reconfigurable robot, it is also essential to understand
how different physical parts can work together through digi-
tal data. The proposed hierarchical programming framework
inherits a progressive layered structure[25] to leverage these
principles while hiding some computing concepts to simplify
the programming practice. It contains four layers (Figure 2):
brick layer, group layer, link layer, and behavior layer.

Brick layer provides fundamental representations of phys-
ical bricks. Each brick has unique functions and properties,
like the instance in the object-oriented programming lan-
guage. We grip the functions and hide the detailed program-
ming concepts like variables, values or data structures that
may frustrate young children at the beginning.

Group layer represents a combination of physical bricks.
A group may contain two or more bricks, usually the
ones who have similar functions. According to the type of
bricks included, a group may provide unique properties or
actions. For example, if two incline (1D rotation) sensors
are assembled as a cross in a group, it can provide a 2D
rotation value to imitate a crossed controller. If four wheels
are included in a group, it can provide direct action such as
”go forward” for execution. A group may contain actuators



Fig. 3. Examples of behavior stacks. Reordering the priorities will lead
to different “personalities” such as (a) bump against the light source when
chasing, or (b) stop before the light source when chasing..

or sensors, but it can not contain both an actuator and a
sensor simultaneously.

Link layer allows children to connect bricks/groups to
create a control flow. We follow the component-based pro-
gramming pattern and hide the complex logical statements.
Children can easily create simple control logic (e.g. switch
on/off) as well as complex ones (e.g. direction control of
a car) by associating different groups. Each link usually
connects an input group (with sensors) to an output group
(with actuators). However, if more than one link is defined
for the same group, conflicts may arise. Thus, we need
higher-level management of these conflicts.

Behavior layer allows children to create multiple behav-
iors, or even present complex behavior logic while link layer
defining simple acts. We adopt a simplified subsumption
architecture [26] to define the logic of complex behavior.
Links with the same output group are sorted in a stack.
The order of each link indicates its execution priority. The
link put on the top has the highest priority. Figure 3 shows
examples of complex behavior stacks. A “car control” and an
“avoid obstacle” behavior can create an obstacle-avoidance
remote car since the “avoid obstacle” has a higher priority. If
another most top priority behavior of “chase light” (a group
of two light sensors controls the direction of the car) is added,
the car will run to chase a glowing object but avoid other
obstacles (Figure 3.a). However, this will lead to a collision
against the glowing object. If the priorities of “chase light”
and “avoid obstacles” are swapped (Figure 3.b), the car will
stop before the glowing object.

B. Hardware

LinkBricks can be divided into three categories: sensor
bricks, actuator bricks, and accessory bricks. Each brick is
embedded with a sensor/actuator, a rechargeable battery, and
a Zigbee wireless module to transmit data to a tablet. When
bricks are disconnected from network, they enter sleeping
mode and offer more than two week’s standby time.

Sensor bricks are embedded with sensors to detect physi-
cal interaction and environment changing (Figure 4.left). The
sensors could be a button, a knob, an infrared reflection
sensor, a motion sensor for tapping, or an incline sensor
for the detection of rotation, etc. Unexposed sensors are
instructed by stickers outside.

Actuator bricks are embedded with actuators to create
physical output according to changes in digital information
(Figure 4.middle). A DC motor is embedded into a brick,
which enables movement of a wheel or other connected parts.

Fig. 4. Sensor bricks (left): tap sensor, incline sensor, button; Actuator
bricks (middle): DC motor, wheel, LED; Accessory bricks (right): cephalic
horn, bug antennae.

Fig. 5. Examples of interactive robots built by LEGO Duplo and
LinkBricks.

Other actuators like LED, speaker and mini screen is also
included.

Accessory bricks aim to augment the characteristics of
a construction (Figure 4.right). The outer appearance of an
accessory brick is designed to fit a particular kind of fig-
ure, and the embedded sensor/actuator also provides special
corresponding functions. For example, if a kid wants to
build a robot insect, s/he may need a pair of antennae, a
huge mouth, a couple of wings, or a long cephalic horn.
We have designed a number of accessory bricks to provide
such features. A movable cephalic horn enables a rhinoceros
beetle to raise other bricks. A pair of spring switches extend
from an antennae brick, providing not only the appearance
but also the touch sensor’s function.

Besides, all bricks are compatible with LEGO Du-
plo bricks. Children can use normal LEGO bricks and
LinkBricks together to build various of things, including
interactive robots, architectures and devices (Figure 5).

C. Programming Application

With the proposed framework, we develop a GUI-based
tablet application to program the physical kits. Two different
interaction modes are provided in the application: Guided
Mode (for novices with structured guidance), and Free
Mode (provides more creativity for children). Considering
children’s attention shifts between the physical and virtual
construction, and their ability to understand terms in the in-
terfaces, we also designed a series of linkage hint animation
in the application.

Guided Mode aims to teach the children how to use the
programming application with bricks to create something
that can move. Tasks of different topics are designed to
familiarize them with the whole system, e.g., completing a



Fig. 6. Interaction process in Guided Mode
.

remote-control car step by step, or learning how to control
a robot bee with a controller and a photosensitive brick.
The programming application contains four major interactive
areas: operating area, brick area, group area, and link area.
All the physical bricks have their corresponding virtual
versions in the brick area, which would appear automatically
as the kit turns on. Children could follow the animation hint
to drag a virtual brick to the operating area to compose a
group or build a link. Animation effects are displayed to
indicate the group and link operation, and icons would be
updated in corresponding areas whenever certain association
is made. Taking the remote-control car for an example, the
interaction process could be described as below:

1) Assemble the physical bricks: The guided mode dis-
plays a car’s 3D rendering model on the screen, and invite
children to assemble the car using wheel-bricks. (Figure 6.a)

2) Make a virtual car group: After making the physical
construction, children should find the wheel bricks’ digital
representation and then drag them together to make a car
group (Figure 6.b). A template of the car is automatically
provided as a hint.

3) Add a control link: Similarly, children are asked to
make a crossed controller group, utilizing two incline sensor
bricks in both physical and digital environments. Then, they
are hinted to slide on the screen from the side of the
controller to the car to generate a link. Thus, they can use
the physical controller to control the car’s movement (Figure
6.c).

4) Management of behavior: Children can create mul-
tiple links with different sensors. Each link represents a
kind of action, and children can drag to change the link’s
priority (Figure 6.d). As discussed in the programming
framework, this will lead to behavior changes. With simple
drags and compares, children can gradually understand the
rule between behavior changes and priority shifts in iterative
attempts.

Free Mode includes all features of Guided Mode, mean-
while provides more openness and features for kids. In Free
Mode, children do not have to follow a specific template.
The application will show potential combinations templates

Fig. 7. Example of programming in Free Mode.

after a virtual brick being dragged to the operating area.
In addition, more abstract group templates and links are
available, e.g. a logic group (provides basic logic operation
between sensors) and a control link (a mapping applicable
between any sensors and actuators to define how they interact
with each other).

Assuming a kid has successfully controlled a LED by an
incline sensor, and then s/he wants to play together with
her/his friend. An example in Figure 7 shows how they can
control a LED brick by using two incline sensor bricks. First,
possibilities of building a group with an incline sensor brick
are presented after double-clicking (Figure 7.a). Two options
are graphically instructed: a cross-controller group, and a
group of separated sensors. Second, corresponding bricks
(red incline sensor brick, and other sensor bricks if any)
will flicker in the brick area as a visual cue, and then the
kid can notice and drag the new brick to the existing brick
(Figure 7.b) to create a new group. Third, a control link is
created by the kid, and can be adjusted in a few ways (Figure
7.c). The kid can define the logic of the controller between
”And”, ”Or” and ”Same”. For example, when ”Same” logic
is chosen the LED brick will only be activated if both incline
sensor bricks are turned to the same direction. The kid can
also choose to control either the brightness or the color of
the LED. The ”Reverse” button helps kid to easily switch
the direction of control logic, e.g., turn left/right to control
the LED on/off.

Overall, Free Mode provides less structured and more
scaffolding instructions and functions. Children are free to try
combining different virtual bricks, or adjusting link functions
and link order. Whenever children make any changes, real-
time feedback can be seen on the physical bricks. This pro-
vides heuristics to involve children in the creative activities.



Fig. 8. Children in the user study.

III. USER STUDY

In this study, the independent variables (IV) were
LinkBricks. The dependent variables (DV) were selected to
examine our design goal of bringing easy-to-use kits for
children to involve in the constructive activities and knowl-
edge learning. The DVs were divided into three aspects, i.e.
(1) Usability and engagement of LinkBricks, (2) Attitudes
towards programming and engineering.

A. Study Procedure

We have invited twenty children aged from 4-7 to take
the experiment separately. The study was conducted in a
classroom of the kindergarten. We set up two video recorders
to capture children’s behaviors and voice. The study included
three stages: pre-survey and teaching stage, test stage, and
interview stage.

The first stage: Pre-survey and teaching. The child first
makes the self-reporting about his attitudes toward playful
toolkits. Then s/he is provided with four wheel bricks and
two incline bricks, and required to complete the example task
step-by-step with additional help from our researchers.

The second stage: test. After finishing the car combination
and controlling its movements in Guided Mode, we introduce
the child into Free Mode and ask s/he to complete a construct
task to light a LED brick using a button brick. We record
the task time and allow the children to make the interactive
combination with their own expression.

The third stage: interview. After completing the whole
construction process, the child is asked to complete a simpli-
fied version of usability questionnaire[27] and post-reporting
of attitudes. Then we conduct an interview to get meaningful
comments from the kids.

B. Results

1) Usability and engagement of LinkBricks: The sim-
plified questionnaire mainly assesses the measurement of
usability and experience with LinkBricks. The questionnaire
is based on a 5-point semantic differential scale with several
positive and negative performance of the LinkBricks. (i.e.,
-2: complicated, +2:simple).As Figure 9 shows, Q1-Q3 eval-
uated practical qualities (average score: 1.33 STD= 1.03)
which revealed that the kids saw LinkBricks as simple, clear
and easy-to-learn. Moreover, we recorded the time duration
of Guide Mode (The average time: 5.34min STD= 1.29) and
LED tasks in Free Mode(The average time: 4.35min STD=
1.31). There has been a decrease of time after initial learning,

Fig. 9. The assessment results of usability and experience. Q1-Q3 related
to the practical qualities and Q4-Q6 to affective qualities.

which also reveals that LinkBricks is usable by learning-
by-doing process. Q4-Q6 evaluated affective qualities (av-
erage score :1.41 STD = 1.01) which reflected children’s
overall engagement, comfortable and enjoyment during the
construction process. The whole construction process is filled
with positive emotion, especially when the children finish
the tasks and see physical feedback. Many kids expressed
their excitement and surprise when they get the car moving,
i.e., ‘Wow, It was so cool!’, ‘Oh,I make it!’. During the
car building process, we noticed that one girl would rather
decorate her car with iced-cream shaped bricks instead of
trying to make it move. After the researcher described a scene
of selling ice cream, she started constructing the controller
and completed the program smoothly.

2) Attitudes towards programming and engineering:
When examining pre-investigation and post-survey for kids
who report their attitudes towards physical programming,
we saw increased learning interest and technological self-
efficacy. In post-survey, 90% of participants said they want
to play again and learn more about how LinkBricks works.
Before they use our system, only 35% of participants agreed
that they enjoy making the construction kits on their own.
Some kids said that they have played physical LEGO bricks
before, but it was the first time they can make them alive
from ordinary toys. Such computational enhanced experience
is so impressed for kids that really inspires them to continue
to explore.

IV. DISCUSSION AND CONCLUSION

A. Discussion

The “ice-creamed” car inspired us to set more possibilities
for children to reach this kit, e.g., like LEGO Friends
series which attracts a lot of girls. Diversified scenes and
themes would encourage more children to use engineering
and computing knowledge as a tool to explore.

Based on participants’ behavior, we found that the ability
of conversion between 3D and 2D is developing in the age
group 4-6, which means the interface design should be more
explicit for target users and also points out that we should
consider different cognitive levels in our design principles.

We also observed the artifacts made in the Free Mode
in the second stage of the experiment. Exploration through
repeated combination operations, we find many children
realize the functionality of sensors and actuators as 9 of



them made a association between a button and a LED brick.
Encouraging children’s imagination and creativity is the most
important aspect of creative learning while helping them
learn the STEM-related knowledge is also a profound con-
cern. In the future, we will develop more LinkBricks modules
and templates to expand its construction and programming
possibilities. For the assessment of knowledge acquisition,
we will conduct a systematic artifacts analysis method [27]
to build a coding scheme for the interactive robots using the
key concepts from Computing and Engineering.

B. Conclusion

In this paper we propose a novel construction kit,
LinkBricks, which provides LEGO-compatible computational
blocks for physical construction and an easy-to-use program-
ming application to low the barrier for preschool children.
We conducted preliminary evaluation to assess the usability
and engagement of our toolkit, and the results show that
LinkBricks is easy-to-use and children can create different
robots while learn STEM-related knowledge.

ACKNOWLEDGEMENT

This work is supported by National Key Research and De-
velopment Plan of China under Grant No. 2016YFB1001402,
Tsinghua Shuimu Scholarship, and Tsinghua University Ini-
tiative Scientific Research Program (20197010003).

REFERENCES

[1] M. G. Petersen, M. K. Rasmussen, and K. B. Jakobsen, “Framing
open-ended and constructive play with emerging interactive materials,”
in the 14th International Conference, 2015.

[2] H. Senaratne, P. Gunatilaka, U. Gunaratna, Y. Vithana, C. de Silva,
and P. Fernando, “Sifeb–a simple, interactive and extensible robot
playmate for kids,” in 2014 4th International Conference on Artificial
Intelligence with Applications in Engineering and Technology. IEEE,
2014, pp. 143–148.

[3] A. Sipitakiat and N. Nusen, “Robo-blocks: designing debugging
abilities in a tangible programming system for early primary school
children,” in Proceedings of the 11th International Conference on
Interaction Design and Children, 2012, pp. 98–105.

[4] K. B. Jakobsen, J. Stougaard, and M. G. Petersen, “Expressivity
in open-ended constructive play: Building and playing musical lego
instruments,” in International Conference, 2016.

[5] M. Przybylla and R. Romeike, “Physical computing and its scope -
towards a constructionist computer science curriculum with physical
computing,” Informatics in Education, vol. 13, no. 2, pp. 241–254,
2014.

[6] C. Vandevelde, J. Saldien, C. Ciocci, and B. Vanderborght, “Overview
of technologies for building robots in the classroom,” pp. 122–130,
2013.

[7] M. S. Horn, E. T. Solovey, and R. J. K. Jacob, “Tangible programming
and informal science learning: making tuis work for museums,” in
International Conference on Interaction Design Children, 2008.

[8] K. Brennan, M. Chung, and J. Hawson, “Creative computing: A
design-based introduction to computational thinking,” Retrieved May,
vol. 9, p. 2012, 2011.

[9] M. Eisenberg, A. Eisenberg, M. Gross, K. Kaowthumrong, N. Lee, and
W. Lovett, “Computationally-enhanced construction kits for children:
Prototype and principles,” in Proceedings of the Fifth International
Conference of the Learning Sciences, 2002, pp. 23–26.

[10] T. Booth, S. Stumpf, J. Bird, and S. Jones, “Crossed wires: Investi-
gating the problems of end-user developers in a physical computing
task,” in the 2016 CHI Conference, 2016.

[11] S. A. Papert, Mindstorms: Children, Computers, And Powerful Ideas.
Basic Books, 1993.

[12] S. H. Yoon, A. Verma, K. Peppler, and K. Ramani, “Handimate:
exploring a modular robotics kit for animating crafted toys.” in
International Conference on Interaction Design Children, 2015.

[13] P. Blikstein, “Gears of our childhood: Constructionist toolkits,
robotics, and physical computing, past and future,” in International
Conference on Interaction Design Children, 2013.

[14] M. Resnick, F. Martin, R. Sargent, and B. Silverman, “Programmable
bricks: Toys to think with,” Ibm Systems Journal, vol. 35, no. 3, pp.
P.443–452, 1996.

[15] A. Sipitakiat, P. Blikstein, and D. P. Cavallo, “Gogo board: augmenting
programmable bricks for economically challenged audiences,” pp.
481–488, 2004.

[16] S. GREENBERG, “Phidgets : Easy development of physical interfaces
through physical widgets,” in Proc of Acm Symposium on User
Interface Software Technology, 2001.

[17] H. S. Raffle, A. J. Parkes, and H. Ishii, “Topobo: a constructive
assembly system with kinetic memory,” in Sigchi Conference on
Human Factors in Computing Systems, 2004.

[18] M. D. Gross, “roblocks: a robotic construction kit for mathematics
and science education,” in International Conference on Multimodal
Interfaces, 2006.

[19] M. Resnick and B. Silverman, “Some reflections on designing con-
struction kits for kids,” pp. 117–122, 2005.

[20] E. Eastmond, “The scratch programming language and environment,”
Acm Transactions on Computing Education, vol. 10, no. 4, pp. 1–15.

[21] G. Revelle, O. Zuckerman, A. Druin, and M. Bolas, “Tangible user
interfaces for children,” in CHI ’05 Extended Abstracts on Human
Factors in Computing Systems, ser. CHI EA ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 2051–2052.
[Online]. Available: https://doi.org/10.1145/1056808.1057095

[22] S. Fleck, C. Baraudon, J. Frey, T. Lainé, and M. Hachet, “”teegi’s so
cute!”: assessing the pedagogical potential of an interactive tangible
interface for schoolchildren,” in the 17th IDC ACM Conference, 2018.

[23] F. Güldenpfennig, D. Dudo, and P. Purgathofer, “Toward thingy
oriented programming: Recording marcos with tangibles,” in Tei 16:
Tenth International Conference, 2016.

[24] A. Bdeir and T. Ullrich, “Electronics as material: littlebits,” in Inter-
national Conference on Tangible, 2010.

[25] J. Gao, M. Wang, and Y. Du, “Intelligent building block construction
and programming system based on progressive layered structure,”
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided
Design and Computer Graphics, vol. 32, no. 7, pp. 1171–1176, 2020.

[26] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal on robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[27] S. Fleck, C. Baraudon, J. Frey, T. Lainé, and M. Hachet, “” teegi’s
so cute!” assessing the pedagogical potential of an interactive tan-
gible interface for schoolchildren,” in Proceedings of the 17th ACM
Conference on Interaction Design and Children, 2018, pp. 143–156.


